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Crystallographic symmetries of stochastic webs 

J S W L a m b  
Institute for Theoretid Physics, University of Amsterdam, Valckeniershaa.65, 1018 XE 
Amsterdam, The Netherlands 

Received 6 August 1992, in final form 10 December 1992 

Abstract In studies of the dynamics of a kicked pendulum, webs along which stochastic 
diffusion takes place, have been observed to occur at resonance. This paper deals with stochastic 
webs with crystallographic symmetries. Via an analysis of the (reversing) symmetries of the 
equations of motion, symmetry properties of stochastic webs are revealed. Furthermore, the 
threshold for stochastic diffusion is discussed in relation to the (reversing) symmetries of the 
equations of motion. 

1. Introduction 

In the last two decades, chaotic motion in nonlinear dynamical systems has been studied 
extensively. A lot of attention was paid to the two-dimensional standard map that displays 
chaotic motion if it is perturbed from integrability [1,2]. In the standard map, the chaotic 
motion is trapped between m-curves  if the perturbation from integrability is smaller than 
some threshold value. This causes a separation of chaotic regions in' so-called stochastic 
layers. Only if the perturbation exceeds the threshold value, the chaotic motion is not 
trapped in the stochastic layers connect to form a two-dimensional stochastic web. The 
latter process is called stochastic diffusion. In the standard map, the perturbation threshold 
for stochastic diffusion is related to the break-up of the last KAM-CWe. 

A model in which stochastic diffusion occurs, different from the standard map, was 
introduced by Zaslavsky et al in a study of the acceleration of a charged particle in a 
kicking inhomogeneous electric field and a homogeneous magnetic field [3]. ne proposed 
model is a harmonic oscillator, experiencing a position-dependent kicking force 

where f(z) = ~sin(2zi). The time-I map of (1) can be calculated exactly. If a f 0 in 
phase space ( x .  y), where x z/a and y = -z, it reads [3,4] 

L, = R, o T  (2) 

where Re is the rotation over a, 

x' = cos(a)x + sin(or)y 
y' = - sin(a)x + cos(a)y 

& : (  (3) 
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o denotes composition, and 

where KO = K / a .  L, is area preserving (and hence symplectic). Here we consider the 
case a # 0, the case .z = 0 requires a separate treatment. In case 01 = 0 the time-1 map of 
(1) is the standard map [1,4,5]. 

In previous studies [3,4] it was numerically observed that if 4 2 x  is rational, i.e. 
the eigenfrequency of the oscillator and the frequency of the kicks are at resonance, the 
stochastic web looks extremely symmetric, see e.g. figure 1. Moreover, for some of the 
resonances it has been shown that there is no threshold for stochastic diffusion, i.e. whenever 
KO # 0 there is stochastic diffusion [6]. 

4 

t 
Y 

0 

-4  

Figuv 1. Part of the stochastic web generated by the map L, for the case f 0) = sin(2ny), 
KQ = 0.18 and (a) (I =rr/2, (b) U = ~ 1 3 .  

In this paper we will study the symmetries of stochastic webs of L,, where f is a 
periodic function f (y)  = f ( y  +-I), as proposed by Hoveijn [7]. Via an analysis of the 
equations of motion, we will show that at resonances that satisfy a crystallographic condition, 
the stochastic webs possess crystaUographic symmetries. Furthermore, a symmetry argument 
will be given to explain the fact that one finds no threshold for stochastic diffusion if 
a = h / 2 ,  f is odd and f (y  + 1/2) = -f(y). 

2. Symmetries and reversing symmetries 

In the symmetry analysis that we will perform in the next sections, we will distinguish 
between symmetries and reversing symmetries. We say that a map M is a symmetry of a 
map L if 

(5) MO L 0 M-' = L .  
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We say that L has a reversing symmetry S, if 

s o  Los- '  = L-1. 

Note that if the order of *e reversing symmetry S, i.e. the smallest integer n such that 
Sn = Id ,  is odd then automatically Lz = I d .  

If L has a reversing symmetry then the map is called weakly reversible in general, and 
reversible if the reversing symmetry is ,an involution, i.e. its own inverse [8,9]. 

The symmetries of a map. together with its reversing symmetries form a group under 
composition. We call this group the reversing symmetry group of the map. The composition 
of a symmetry and a reversing symmetry is a reversing symmetry, and the, composition of 
two (reversing) symmetries is a symmeq. For a more detailed discussion on the structure 
of reversing symmetry groups and a related decomposition property of weakly reversible 
maps, see [IO]. 

It has been well recognized that the map L, is reversible [7,11-131. Let My be the 
mirror in the y-axis 

then we find that 

( R ,  o My)' = (My o T)*  id (8) 

and by the decomposition property of reversible maps [9] that R, o My is an involutory 
reversing symmetry of La. 

Moreover, i f f  is odd, i.e. f(-y) = -f(y), then - Id  is a symmetry of L, and hence 
-Id o R. o My 

Up to here, we find that L, has definite symmetry properties. However, we do not find 
that L,  has the translation symmetries that the stochastic webs in figure 1 seem to possess. 
In the next section we will show that translation symmetries are possessed by powers of L, 
at resonances that satisfy a crystallographic restriction. 

R, o Mx is also a reversing involution. 

3. The translation group and its lattice 

In this section it will be shown that if cyp,* = 2rrpjq where p and q are integer coprimes 
and q E (3,4.6) that L:,,, i.e. the time-q map of (l), possesses translation symmetries. 
This is also the case if q = 1 and q = 2, but we do not consider these cases here, since 
for these values of q the'mpping displays no chaotic motion [3,4]. As a result of the 
translation symmetries, we find that there is a subgroup of the reversing symmetry group 
of L& that is isomorphic to a crystallographic group. 

To prove this, we first observe that any resonance C X ~ , ~ ,  L&q can be written as 

where n denotes successive composition of the maps 

T, = R O O T  o R-p 
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where in (9) B = k   CY^,^. At this point, let us first consider the translation symmetries of 
T .  T possesses the translation symmetries 

x ’ = x + r  

y ’ = y + n  

for all r E I[$ and n E %. 
Regarding (9) it is obvious that if there exists a translation U,, that commutes with 

G.ep,q for all k then L&; possesses this translation symmetry. Moreover, if U,, is such a 
translation symmetry, then it is inevitable that also Rk..p;i o U,, o R-k.ap,s is a translation 
symmetry for any integer k .  However this restricts the possible translation symmetries to 
the ones that satisfy R,,,, o U,,, o~R-~,,~ = U,,,n, for some r’ E R and n‘ E Z. It is a well 
known fact from crystallography [14,15] that this can happen only if q E (1,2,3,4,6]. In 
other words, a pattern on a plane with translation symmetry can possess only two-, three-, 
four-, and sixfold rotocentres that leave this pattern invariant. 

In this way we find that L:D,4 possesses a group of translation symmetries generated by 
UI,O and UOJ.  In case q = 3 or q = 6, Lzp,q possesses a group of translation symmetries 
generated by U 2 ’ z i ~ , o  and U,’zifi,%,. In both cases the translation vectors span a lattice. In 
case q = 4 the lattice is square and in case q = 3 or q = 6 the lattice is hexagonal. 

Because of the translation symmetries, the phase space can be considered to be tiled 
with unit cells that contain equivalent dynamics with respect to L&,. Hence, as in 
crystallography, from here on we can restrict our attention to the dynamics in one unit 
cell. In the same way as unit cells can he decorated with atoms in crystallography, here 
the unit cells can be regarded to be decorated with dynamics. The actual decoration of the 
unit cell depends on the function f. In case q = 4 the unit cell is a 1 x 1 square box, and 
in case q = 3 or q = 6 Ne unit cell is a diamond with perpendicular diagonals of length 
2/& and 2. 

Because of the translation symmetries one could also regard the unit cell to represent 
the surface of a two-torus on which the dynamics takes place. 

In the next section we will consider the implication of other linear symmetries that LZP,< 
may possess. 

4. Crystallographic symmetries 

In this section we regard the linear discrete (reversing) symmetries that L& (q E (3,4,6}) 
may possess. Together with the translation symmetries, these (reversing) symmetries form 
a crystallographic group. 

In section 2 it was shown that L,  is reversible. This reversing symmetry R, o My is a 
mirror. In figure 2 the mirrors have been drawn in the unit cells for p/q = 4, p/q = $, 
and p/q = k. The unit cells have been chosen in such a way that they have (0,O) as the 
centre and are symmetric with respect to the reversing mirror. The arrows in the unit cell 
schematically indicate the implications of the (reversing) symmetries on the dynamics in 
the unit cell. The crystallographic groups that are generated by the translations and the 
reversing mirror are isomorphic f& all q E [3,4,6). 

For a proper classification of the crystallographic subgroups of the reversing symmetry 
goups, we remark that our concept of a reversing symmetry is strongly related to the 
concept of a colour-reversing symmetry in dichromatic colour groups [I51 and the concept 
of spin-reversal symmetries in magnetic groups 1141. In correspondence with the literature 
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Figure 2. Symmetry decorarion of the unit cell 
for gened f (pm'), for the case (a) p f q  = 4. 
( b )  p / q  = 4. and (c) p / q  = i .  The dashed 
line is a reversing mirror. One initial imow and 
its image are depicted in the unit cell to indicate 
schematically the implications of the reversing 
minor on the dynamics. 

on these groups we will use the Shubnikov-Belov notation [I51 for the crystallographic 
subgroups of the reversing symmetry group. In that notation, the group discussed above is 
denoted as pm' (m' denotes the reversing mirror). 

If f satisfies certain constraints, more complicated crystallographic symmetries can 
occur. As mentioned already in section 2, i f f  is odd, then L, has the symmetry -Id, 
that is a twofold rotocentre at (0,O). Hence as a direct consequence L, possesses a second 
reversing mirror R, o M,. 

Moreover, i f  f is odd we find twofold rotocentres at (k/2,1/2) if q = 4 and twofold 
rotocentres at (k/8+18/2,1/2) i f q  = 3 or q = 6 for all integers k and 1. In figure 3 the 
reversing mirrors and rotocentres have been depicted in the unit cell for p / q  = $, p / q  = a 
and p / q  = i .  One initial mow and its images have been used to indicate the implications 
of the (reversing) symmetries on the dynamics. Again we find that the crystallographic 
groups for q = 3, q = 4, and q = 6 are isomorphic. In Shubnikov-Belov notation this 
group is denoted cm'm'. 

In case q = 4, f is odd and f ( y  + 1/2) = - f (y) we observe a type of reversing 
symmetries that we do not encounter if q = 3 or q = 6: fourfold reversing rotocentres. 
They are situated at (k/2,1/2) where k + 1 is odd. For a detailed derivation, see appendix 
A. In figure 4 the mirrors and rotocentres have been drawn in the square unit cell. Again 
the images of one mow have been used to indicate the implications of the (reversing) 
symmetries on the dynamics. In this case the crystallographic subgroup of the reversing 
symmetry group is p4'gm'. 

The crystallographic subgroup of the reversing symmetry group of the map L& contains 
the apparent symmetries of its stochastic web. A stochastic web consists of a collection of 
chaotic orbits of the map L, (that is of course identical to the stochastic web of the map Lt 
for any non-zero integer k) .  Every (reversing) symmetry in the crystallographic'subgroup of 
the reversing symmetry group relates points of the stochastic web to points of other chaotic 
orbits. It is easily checked that these other chaotic orbits must be part of the stochastic web 
too. This is the reason why the stochastic web of the map clearly displays all the 
symmetries of the crystallographic subgroup of the reversing sy,mmetry group of L&q. 

1 
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Figure 3. Symmetry decoration of the unit cell 
for odd f(cm'm'), for the case (a) p/q = $, 
(b) p/q = f ,  and (c) p/q = A .  Ihe dashed 
lines are reversing mirrors and the e's denote 
twofold rotocentres. One initial m w  and its 
images are depicted in the unit cell to indicate 
the implications of the (reversing) symmetries 
on the dynamics. 

(4 

a. m 

Figure 4. Symmetry decoration of the unit cell for the case where f 
is odd, f(y + 112) = -/e) and p/q = 3 (p4'gm'). Dashed lines 
denote reversing mirrors, e's twofold rotomtres, and e's fourfold 
reversing rotocentres. One initial mow and its images are depicted in 
the unit cell to indicate the implications of the (reversing) symmetries 
on the dynamics. 

However, in the description of the symmetries of the stochastic web it is not relevant 
to distinguish between symmetries and reversing symmetries. Hence to find the symmetry 
group of the stochastic web, we have to derive from the crystallographic subgroup of the 
reversing symmetry group, the ordinary crystallographic group that is found by neglecting 
the differences between symmetries and reversing symmehies. We find that if q E (3,4,6) 
the stochastic webs have pm symmetry in general, and cmm symmetry iff is odd. In case 
q = 4, f is odd and f ( y  + 1/2) = - f ( y ) ,  the stochastic web has p4gm symmetry. The 
results have been summarized in table 1. 

Table 1. The crystallographic subgroup of the reversing symmetry group of L& (so) and the 
crystaUogmphic symmetry group of its stochastic web (sG web) for different values of q and 
symmetry properties of the periodic function f. 

property Of f 4 Rso SG web 

- 3,4,6 pm' pm 
fW = -f(-y) 3.4.6 cm'm' cmm 
f C v )  = -/(-Y) and 
f ( Y  + 1/2) = - f O  4 v4'nm' v4nm 
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Remark that from the analysis above it follows that the stochastic webs that have been 
observed by Zaslavsky and co-workers have cmm symmetj if q = 3 or q = 6 and p4gm 
symmetry if q = 4. because they considered f(y) = sin(2xy) that is odd and satisfies 
f (y  + 1/2) = -f(y). In figure 5 the stochastic webs have been plotted~in the unit cells 
for this particular choice of f. In combination with figure 3 and figure 4 it is easy to check 
the symmetry properties of the web. 

5. Approximate Hamilton systems 

In [4,5] it is suggested +at the symmetry of the stochastic web of the map La, ,  with 
f(y) = sin(2rry). is related to the symmetry of the Hamiltonian 

where & = 2x(-~in(kq,,~), c o ~ ( k a ~ , ~ ) )  and (d/dy)g(y) = -f(y): In fact, Hoveijn [7] 
has shown that the map L& approximates the timeKO map of with error O(K;). 
Hence, the error of this approximation is small if KO is small. Note however that if q 
is even, this approximation suppresses the even p m  of f: if f = feven + foad. then the 
contribution of feven to Hm0,* is zero. Hence, if q is even then this approximation should be 
used only in case f is odd. 

The approximate Hamilton system can be used to obtain some insight into the structure 
of the stochastic web for small KO. 

The type of chaos that creates the stochastic web stems from transversal intersections 
of the stable manifold of one hyperbolic fixed point and the unstable manifold of another 
hyperbolic fixed point; so-called heteroclinic points. These intersections create a type of 
saddle connection along which the chaotic motion proceeds. The microscopic structure of 
these type of saddle connections is very complicated (see e.g. figure 5). 

The web that is formed by the saddle connections in the approximate Hamilton system 
can serve as a first approximation of  the stochastic web. This first approximation to the 
stochastic web is called the web's skeleton, following [4,5]. 

At this stage it is of interest to study the symmetries of the approximate Hamilton 
systems and to see to what extent they display the symmetries of the map for 

The linear symmetries and reversing symmetries of the approximate Hamilton system 
c& be read from the Hamiltonian immediately (see appendix B). We find in case 
q E [3,4.6), that H,,, possesses the same translation symmetries as the maps L$,,. 
However, the approximate Hamilton system does not share all its other linear (reversing) 
symmetries with L&. The crystallographic subgroups of the reversing symmetry groups 
of the approximate Hamilton systems and the consequences of that for the symmetries 
of the web's skeleton, found by ignoring differences between symmetries and reversing 
symmetries, are summarized in table 2. Comparing.fable 2 with table 1 we find that the 
crystallographic subgroups of  the reversing symmetry groups of L b  that were found in the 
previous section, are subgroups of the crystallographic groups that we find in ihe analysis of 
the approximate Hamilton systems. In other words, the neglected error in the Hamiltonian 
approximation breaks some of the symmetries of the approximate Hamilton system. 

q E ( 3 , 4 , 6 ) .  
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Table 2. The crystallographic subgroup of the reversing symmetry group of the approximate 
Hamilton system (RSG) and the crystallographic symmetry group of the web’s skeleton (so 
skeleton) for different values of q and symmetry properties of the periodic function f. 

Pmoerwof f L1 RSa so skeleton 

- 3 p3m’ p3m 
f ( Y )  = - f ( - y )  3,6 p6m‘m’ p6mm 
f ( Y )  = - f ( - y )  4 p4m’m’ p4mm 
f ( ~ )  = - f ( - ~ )  and 
f ( y + I / Z ) = - f C y )  4 p’4gm p4mm 

The symmetry breaking can easily be verified by comparing figures 2-4 with figure 6t. 
In particular, in the case that g = 3 and there is no restriction on f, the threefold rotocentre 
that appears in the approximate Hamilton system is absent in the reversing symmetry group 
of L&. In case f is odd, the four- and sixfold rotocentres in the approximate Hamilton 
systems become twofold rotocentres. In case f (y  + 1/2) = -f(y) and g = 4 the twofold 
reversing rotocennes disappear and at the same time the mirrors between the fourfold 
reversing rotocentres are broken. 

Figure 5. Part of the stochastic web generated 
by L,,,< with KO = 0.18 in the unit cell for (a) 
p / q  = a, (b) p / q  = 5.. and (4 PI4 = a. I 

In the next section the last type of symmetly breaking will be used to show that 
generically in case g = 4, f is odd, and f ( y  + 1/2) = -f(y) there is no threshold 
for stochastic diffusion. 

t In figure 6 for reasons of clarity we have chosen not to display m w s  to indicate the implications of the 
(reversing) symmetries on the dynamics. 
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Figure 6. Decoration of the unit cells of the dynamics generated by Hen.* for the case (a)  q = 3 
(p3m'), (b) q = 3,6 (p6"m'). (c) q = 4 (p4m'm'), ( d )  q = 4 (p'4gm). Dashed lines denote 
reversing minors, e's fourfold reversing rotocentres. 0's twofold reversing rotocentces, e's 
sixfold rotocentres, a's fourfold rotocentres, a's threefold rotocentces, m's twofold rotocentres. 
and double lines denote mirrors. 

6. On the threshold for stochastic diffusion 

In the standard map it is well known that there is a threshold for stochastic diffusion that 
is'related to the break-up of the last KAM-toms [l]. However, in the case of the maps 
that were considered by Zaslavsky and co-workers it was shown that there is no threshold 
for stochastic diffusion for the map at the resonances olp,q with q E (3,4,6] in case 
f ( y )  = sin(2zy) [6] .  At resonances with q $ (1,2,3,4,6} there is less certainty about 
the threshold, but if there is one it is believed to be extremely small. 

If the plane is tiled with finite-size unit cells, a stochastic web occurs if the chaotic 
saddle connections connect the sides of the unit cell to form a two-dimensional web. Then 
the chaotic motion spreads over the entire phase space along the saddle connections that 
form the stochastic web. This has been observed to occur immediately for every non-zero 
value of KO in case f(y) = sin(2rry) and q E {3,4,6]. 

One way of understanding the fact that there is no threshold for stochastic diffusion is 
to regard the saddle connections in the approximate Hamilton systems. If they form a web 
(the web's skeleton) then this web may survive for small values of KO if one takes into 
account the (small) errors that were made in the Hamiltonian approximation [4,7]. 

Now raises the question whether we can predict from the function f whether we will 
find a threshold for stochastic diffusion, or not. Regarding the case q = 4, f is odd and 
f (y  + 1/2) = -f(y), by a symmetry argument it will, be shown that generically one will 
not find a threshold for stochastic diffusion. 

Consider the (reversing) symmetries as indicated in the unit cell in figure 6(d).  The 
fourfold reversing rotocentres play an important role in the stochastic web. If a dynamical 
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system on the plane possesses a fourfold reversing rotocentre, then 

(i) The fourfold reversing rotpcentre point is a fixed point. 
(ii) The character of this f ixed  point is generically hyperbolic. (The parabolic case is 

The first observation follows directly from the fact~that any fourfold reversing rotocentre 
is also a twofold rotocentre. It is easy to show that any twofoId rotocentre point is a fixed 
point. The second observation is related to the fact that any 2 x 2 matrix with real entries 
that is inverted after conjugation with R,+ has a determinant equal to one, and two real 
eigenvalues. 

Now, consider the generic situation that the fourfold reversing rotocentxes are occupied 
by hyperbolic fixed points. In the Hamiltonian approximation two of such fourfold reversing 
rotocentres are connected via a mirror (double lines in figure 6(d)). This implies immediately 
that this mirror serves as a saddle connection, i.e. the mirror is the stable manifold of one 
of the hyperbolic points and the unstable manifold of the other. Hence if q = 4, f is odd 
and f ( y  + 1/2) = - f ( y )  the approximate Hamilton system possesses a web of saddle 
connections: the web's skeleton of the stochastic web of L,,,,t. 

Regarding the (reversing) symmetries of L& in the case that q = 4, f is odd,' and 
f ( y  + 1/2) = - f ( y )  (figure 4), we observe that the fourfold reversing rotocentres are still 
there, so generically these points are hyperbolic fixed points. The reversing mirrors also 
survive, but the ordinary minors, which served as the web's skeleton, have disappeared. 
Hence, generically the smooth saddle connections break up. Nevertheless the stable and 
unstable manifolds that become separated will still intersect a reversing mirror. Moreover, 
if a stable or unstable manifold intersects a reversing mirror, then it follows immediately 
that this point is a heteroclinic point i.e. an intersection point of a stable manifold of one 
hyperbolic point and the unstable manifold of another hyperbolic point. Thus, although 
the smooth saddle connection generically disappears, some heteroclinic points will survive. 
These heteroclinic points give rise to a chaotic type of saddle connections. Since these 
chaotic saddle connections form a web, we find that generically there is no threshold 
for stochastic diffusion, i.e. for every non-zero value of KO, stochastic diffusion is to be 
expected. 

It would be tempting to conjecture that the above conclusion can be drawn without using 
the approximate Hamiltonian, using only the (reversing) symmetries of the map, by showing 
that generically it is inevitable that the stable and unstable manifolds of the hyperbolic fixed 
points on the fourfold reversing rotocentres intersect reversing mirrors. However, more 
work is needed to gain the insight that is needed to prove such a conjecture. 

the marginal exception.) 

7. Concluding remarks 

In this paper it has been shown that crystallographic symmetries of stochastic webs can be 
understood entirely from an analysis of the equations of motion. 

One should be careful using the approximate Hamilton system in explaining symmetry 
properties of the stochastic web. This notion is important in relation to questions concerning 
the symmetry properties of the stochastic web in case q 6 (1,2,3,4,6). In [4,5] 
it is conjectured that since the approximate Hamilton system possesses quasi-petiodic 
symmetries, the stochastic web will too. From the present analysis it follows that one 

t For a pichlre that illustrates this fact, see e.g. [4] p 130. 
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should be careful with such conjectures since it is to be expected that the stochastic web 
breaks some of the symmetries of the approximate Hamilton system. 

However, this problem deserves a discussion on its own and this is beyond the scope 
of the present paper. In analogy with methods that are used in quasi-crystallography 1161, 
one may think of proving the existence of quasi-crystallographic symmetries by embedding 
the dynamical system in a higher-dimensional phase space in which it possesses translation 
symmetries. 

The (reversing) symmetries of (powers of) a map, of course, do not just affect the 
chaotic motion. Also, regular orbits may turn out to be symmetric because of (reversing) 
symmetries of (powers of) the map. For a discussion on the symmetries~of the regular 
motion in relation to the symmetries of the chaotic motion, see e.g. Chossat and Golubitsky 
[17] and Kimball and Dumas [18]. 

A general discussion on dynamical systems that possess (reversing) symmetries only 
if they are considered on a proper time scale, e.g. powers of a map possess (reversing) 
symmetries that the map itself does not possess, is the. subject of a future publication [19]. 
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Appendix A. A fourfold reversing rotoeentre for the case q = 4, f is odd and 
f 0 + 1/21 = -f0) 

In this appendix it is shown that for the case 4 = 4, f is odd, and f(y + 1/2) = - f ( y ) ,  
L&  possesses a fourfold reversing rotocentre at (1/2, 0). 

If q = 4 and f is odd we can write 

L&n = (Tprjz 0 T)' ( P  = fl) (13) 

as explained in section 3. If we now perform the translation ( x ,  y )  H (x + 1/2, y), we 
find, if f (y  + 1/2) = -f(y), that L;,,' H t&j2, where 

i & 1 2  = CTp;f/2 0 T)' 

From (14) it is easily checked that 

Hence (ID, 0) is a fourfold reversing rotocentre of L:n,,. ~ From the other (reversing) 
symmetries of L:p,q, it follows directly that there are fourfold reversing rotocentres at all 
points (k/2,1/2) with k and 1 integers and k + 1 odd. 
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Appendix B. Hamilton systems with linear (reversing) symmetries 

In this appendix the property of Hamilton systems of having linear (reversing) symmetries, 
is related to a symmetry property of the Hamiltonian. 

Proposition. Consider a Hamilton system with Hamiltonian H ( x )  on the phase space 
x = (4,~) E R" x Rn, and a linear transformation U that can be written as a 2 x 2 matrix 
on ( q . p ) .  Then 

U is a symmetry + H ( U x )  = det(U). H ( x )  
U is a reversing symmetry + H ( U x )  = -det(U) . H ( x ) .  

T is a symmetry + H ( T x )  = H ( x ) ,  
T i s  a reversing symmetry + H ( T x )  = - H ( x ) .  

Moreover, if T i s  a translation, then 

Proof. In a Hamilton system the equations of motion are given by 

X = J V X H ( x )  J = ( O  -1 0 ') 
If x = Ux' then VI, = UTV, and with (16) it follows that 

U T  o J-' o UX' = V,,H(Ux') .  (17) 

Moreover 

UT o J-' o U = det(U). J-' (18) 

and hence 

H(Ux') X' = JVx)- 
det(U) ' 

U preserves the equations of motion if H ( U x )  = det(U) I H ( x )  and U inverts the equations 
of motion if H ( U x )  = -det(U) H ( x ) .  I3 

The proof for the translations is easy, and therefore omitted. 

References 

[I] Chirikov B V 1979 Phys. Rep. 52 265 
[2] Lichtenberg A I and Lieberman M A 1983 Regvlar and Stochastic Motion (Applied Mathematical Sciences 

I31 Zaslavsky G M, Zakharov M Yu, Sagdeev R Z, Usikov D A and Chemikov A A 1986 J m P  Lett. 44 451 

[4] Zaslavsky G M, Sagdeev R Z. Uslkov D A and Chemikov A A 1991 Weak Chaos and Quai-Regular 

[SI Chernikov A A, Sagdeev R Z and Zaslavsky G M 1988 Physicn D 33 65 
161 Afanasiev V. Cherenikov A A. Sagdeev R Z and Zaslavsky G M 1990 Phys. Len. 144A 229 
[7l Hoveijn I 1992 Chaos, S o l i l o ~  & tructoh 2 81 
181 Sevryuk M €4 1986 Reversible System (Lecture Notes in Mathematics 1211) (Berlin: Springer) 
[91 Roberts J A G and Quispel G R W 1992 Phys. Rep. 216 66 

[IO] Lamb J S W 1992 J. Phys. A: Math Gen. 25 925 

38) (New York: Springer) 

(Zh E k p .  Teor. Fir. Pis. 44 349); 1986 Sow. Phys.-ETP 64 294 (2%. Ekp .  Teor. Fiz. 91 500) 

Partems ( C d r i d g e  Nonlinear Science Series 1J (Cambridge: Cambridge University Press) 



Crystallographic symmetries of stochastic webs 2933 

1111 Piiia E and Cantoral E 1989 Phys. Len. 135A 190 
[12] Zaslavsky G M 1990 Noise md Chaos in Nonlinear Dynamical System ed F Moss, L A Lugiaro and W 

[131 Lowensteein J H 1991 Chaos 1473 
[14] Ludwig W and Falter C 1988 Symmetries in Physics (Springer Series in Solid-Sme Sciences 64) (Berlin: 

1151 Loeb A L 1971 Color m d S y w n y  (New York Wiley) 
1161 Janssen T 1988 Phys. Rep. 168 55 
1171 Chossat P and Golubitsky M 1988 Physicn D 32 423 
1181 Kimball J C and D u m  H S 1990 Pbs.  Lett. 144A 201 
1191 Lamb I S Wand Quispel G R W 1993 Reversing k-symmehies in dynamical systems (to be published) 

Schleik (Cambridge: Cambridge University Press) p 289 

Springer) 


